
Fit,	score	and	evaluate	independent	boosted	trees
In	this	notebook	8	of	the	below	mentioned	models	are	fitted	with	GradientBoostingregressor()	to	predict	the	harvest	yield.	The
model	scores	are	computed	and	a	plot	for	each	model	showing	the	feature	importance	and	the	partial	dependence	is	made.

The	models	we	fit	have	the	following	features	over	the	growth	season:

1.	 NDVI
2.	 NDRE
3.	 MSAVI2
4.	 NDVI,	DTM,	N,	and	E
5.	 NDRE	,	DTM,	N,	and	E
6.	 MSAVI2,	DTM,	N,	and	E
7.	 NDVI,	NDRE,	and	MSAVI2
8.	 NDVI,	NDRE,	MSAVI2,	DTM,	N,	and	E

The	correlation	factors,	R2,	that	have	a	value	around	0.5	indicate	that	the	models	are	well	described	by	the	features.	The	highest	test
score,	R2 = 0.625814,	is	for	the	8th	model	trained	on	NDVI,	NDRE,	MSAVI2,	DTM,	N,	and	E.	The	second	highest	R2 = 0.612129	is	for	the
fifth	model	that	is	trained	on	the	features	NDRE	,	DTM,	N,	and	E.	The	lowest	test	score,	R2 = 0.477224,	is	for	the	3rd	model	trained	only
on	MSAVI2.	That	means	if	we	follow	model	8	then	we	can	predict	the	harvest	yield	with	a	mean	absolute	error	
MAE = 1298.919713kg /ha	and	model	5	gives	MAE = 1334.772035kg/ha.	The	highest	mean	absolute	error	is	also	from	the	least
precise	model	3	with	MAE = 1602.946569kg /ha.

The	feature	importance	graph	for	model	8	shows	that	N,	and	E	were	the	features	that	contributed	most	to	the	model.	The	next	features
that	contributed	to	model	8	are	the	vegetations	indexes	NDVI,	NDRE,	and	MSAVI2	features	from	the	beginning	of	the	growth	season.
Furthermore	the	field	DTM	was	also	one	of	the	most	important	features.	Generally,	it	seems	that	the	features	from	the	beginning	and
the	end	of	the	growth	season	are	the	ones	that	contribute	most	to	the	harvest	yield	prediction	models.

The	partial	dependence	graphs	for	model	8	shows	that	the	most	important	features	N	and	E	the	harvest	yield	is	descending	for	N	>	0.4
and	ascending	for	E	>	0.4.	We	can	however	not	conclude	that	the	coordinates	are	the	most	contributing	to	the	model	because	we	have
data	from	few	coordinates.

We	see	on	the	partial	dependency	graphs	that	it	seems	like	there's	a	growing	linear	dependency	between	the	harvest	yield	and,
respectively,	the	NDVI	feature	on	July	27	for	model	4,	NDVI	feature	on	August	10	for	model	1	and	also	for	the	NDRE	feature	on	August
24	for	model	5.	That	means	that	in	the	end	of	the	growth	season	a	higher	observed	NDVI/NDRE	leads	to	a	higher	harvest	yield.

For	model	8	we	see	that	in	the	beginning	of	the	season	it	seems	like	the	harvest	yield	increases	with	a	higher	NDVI,	but	then	later	on
towards	the	middle	of	the	growth	season	we	see	that	a	higher	observed	NDVI	leads	to	a	decrease	in	harvest	yield.	Which	can	indicate
that	the	crop	needs	to	ripe.	Besides	on	model	8,	we	also	observe	these	dives	in	harvest	yield	for	the	features	during	the	middle	of	the
growth	season	on	model	1,	2,	4,	5,	and	7.

Generally,	we	observe	that	at	the	beginning	and	end	of	the	growth	season	it	seems	that	a	high	observed	value	of	NDVI	and	NDRE	leads
to	a	higher	harvest	yield	in	combination	with	a	steady	NDVI/NDRE	value	during	the	middle	of	the	growth	season.

In	[2]:

import	pathlib
import	site
BDICG_git_repo_path	=	'../MVP4_partially_complete_dataset/'
site.addsitedir(BDICG_git_repo_path)

import	dask
import	dask.distributed
import	geopandas	as	gpd
import	matplotlib.pyplot	as	plt
import	numpy	as	np
import	pandas	as	pd
from	sklearn.ensemble	import	GradientBoostingRegressor
from	sklearn.model_selection	import	train_test_split
from	sklearn.ensemble.partial_dependence	import	plot_partial_dependence
from	sklearn.metrics	import	mean_absolute_error
import	seaborn	as	sns

from	field_raster_model	import	(remote_mkdir)
sns.set()
pd.set_option('display.max_columns',	500)

Dask	client



In	[3]:

client	=	dask.distributed.Client('localhost:8786')
#client.restart()
client.upload_file(BDICG_git_repo_path	+	'field_raster_model.py')
client

In	[4]:

def	get_interpreter():
				import	sys
				return	sys.executable

print('Local	interpreter:	{}'.format(get_interpreter()))
print('Client	interpreter:	{}'.format(dask.delayed(get_interpreter)().compute()))

In	[5]:

#	Output	paths
OUTPUT_FEATURE_PATH	=	'/scratch/BDICG/feature_set_test_2018_12_13_13_35_59/'
DF_SAMPLES_FILE_PATH	=	pathlib.Path(OUTPUT_FEATURE_PATH)/'df_samples.parquet.brotli'
FIG_PATH	=	pathlib.Path('./feature_importance_plots')
FIG_PATH.mkdir(exist_ok=True)

print('OUTPUT_FEATURE_PATH:	{}'.format(OUTPUT_FEATURE_PATH))

In	[6]:

feature_set	=	dask.delayed(pd.read_parquet)(DF_SAMPLES_FILE_PATH,	engine='pyarrow')
feature_set.head().compute()

Feature	extraction	and	model	fitting
In	[7]:

y	=	feature_set.harvest_dry_yield.values.reshape(-1,	1)	#	Response	variable

distributed.comm.tcp	-	WARNING	-	Could	not	set	timeout	on	TCP	stream:	[Errno	92]	Protocol	not	availa
ble
distributed.comm.tcp	-	WARNING	-	Could	not	set	timeout	on	TCP	stream:	[Errno	92]	Protocol	not	availa
ble

Out[3]:

Client
Scheduler:	tcp://localhost:8786
Dashboard:	http://localhost:8787/status	(http://localhost:8787/status)

Cluster
Workers:	20
Cores:	400
Memory:	8.01	TB

Local	interpreter:	/home/donj/anaconda3/envs/py36_v3/bin/python
Client	interpreter:	/opt/miniconda3/envs/py36_v3/bin/python

OUTPUT_FEATURE_PATH:	/scratch/BDICG/feature_set_test_2018_12_13_13_35_59/

Out[6]:

('S2_L1C_B01',
'03-09	-	March
9')

('S2_L1C_B01',
'03-23	-	March
23')

('S2_L1C_B01',
'04-06	-	April
6')

('S2_L1C_B01',
'04-20	-	April
20')

('S2_L1C_B01',
'05-04	-	May
4')

ID_DDS_field harvest_year N E

4 2017 6178582.5 565572.5 0.138164 0.129424 0.128273 0.127705 0.119923
565577.5 0.138264 0.129524 0.128373 0.127805 0.120020
565582.5 0.138264 0.129524 0.128373 0.127805 0.120117
565587.5 0.138350 0.129623 0.128473 0.127905 0.120310

6178587.5 565572.5 0.138079 0.129325 0.128208 0.127678 0.119913



In	[8]:

models	=	{
				'NDVI':	['NDVI'],
				'NDRE':	['NDRE'],
				'MSAVI2':	['MSAVI2'],
				'NDVI_DTM_N_E':	['NDVI',	'DTM'],
				'NDRE_DTM_N_E':	['NDRE',	'DTM'],
				'MSAVI2_DTM_N_E':	['MSAVI2',	'DTM'],
				'NDVI_NDRE_MSAVI2':	['NDVI',	'NDRE',	'MSAVI2'],
				'NDVI_NDRE_MSAVI2_DTM_N_E':	['NDVI',	'NDRE',	'MSAVI2',	'DTM']
}

col_names	=	dict()
X_train_split	=	dict()
regressors	=	dict()
scores	=	{('train',	'R^2'):	dict(),	('train',	'MAE'):	dict(),
										('test',	'R^2'):	dict(),	('test',	'MAE'):	dict()}

feature_set_columns	=	feature_set.columns.compute()
feature_set_and_index	=	feature_set.reset_index()
for	model,	model_features	in	models.items():
				#	Identify	names	of	features	to	fit	model	to
				feature_names	=	[]
				for	feature	in	model_features:
								feature_names.extend([col	for	col	in	feature_set_columns	if	feature	in	col])
				if	model.endswith('N_E'):
								feature_names.extend(['N',	'E'])
				
				#	Extract	features
				X	=	feature_set_and_index[feature_names]
				col_names[model]	=	X.columns
				
				#	Split	the	training	and	testing	feature	set
				X_train,	X_test,	y_train,	y_test	=	dask.delayed(
																												train_test_split,	nout=4)(X,	y,	random_state=42)
				X_train_split[model]	=	X_train

				regressor	=	GradientBoostingRegressor()
				regressor	=	dask.delayed(regressor.fit)(X_train,	y_train)
				regressors[f'regressor_{model}']	=	regressor

				#	The	predicted	response	variable,	harvest_dry_yield.
				y_pred_train	=	dask.delayed(regressor.predict)(X_train)
				y_pred_test	=	dask.delayed(regressor.predict)(X_test)

				#	The	R^2	and	the	mean	absolute	error,	mae.
				scores[('train','R^2')][model]	=	dask.delayed(regressor.score)(X_train,	y_train)
				scores[('train',	'MAE')][model]	=	dask.delayed(mean_absolute_error)(y_train,	y_pred_train)
				scores[('test',	'R^2')][model]	=	dask.delayed(regressor.score)(X_test,	y_test)
				scores[('test',	'MAE')][model]	=	dask.delayed(mean_absolute_error)(y_test,	y_pred_test)

regressors	=	dask.delayed(regressors)
scores	=	dask.delayed(scores)
scores.visualize(rankdir='LR')



In	[9]:

regressors	=	client.persist(regressors)
scores	=	client.compute(scores)
dask.distributed.progress(scores)
#	Running	time:	~5min	45.0s

Out[8]:

distributed.comm.tcp	-	WARNING	-	Could	not	set	timeout	on	TCP	stream:	[Errno	92]	Protocol	not	availa
ble



In	[10]:

pd.DataFrame(scores.result())

Plot	of	the	feature	importance	and	the	partial	dependence
In	[13]:

for	model	in	models.keys():
				fig,	ax	=	plt.subplots(1,	figsize=(10,10))
				regressor	=	regressors[f'regressor_{model}'].compute()
				feature_importances	=	regressor.feature_importances_

				#Feature	importances	relative	to	the	max	importance
				feature_importances	=	100.0	*	(feature_importances	/	feature_importances.max())

				#	Sorted	index	
				idx	=	np.argsort(feature_importances)
				pos	=	np.arange(idx.shape[0])	+	.5
				feature_set_names	=	col_names[model][idx].compute()

				#	Choosing	the	most	impartant	features	to	plot
				sorted_idx	=	np.sort(idx)
				most_important_features	=	feature_importances[idx[sorted_idx]][-10:]
				most_important_features_names	=	feature_set_names[idx[sorted_idx]][-10:]
				pos	=	pos[-10:]
				
				ax.barh(pos,	most_important_features,	align='center')
				ax.set_yticks(pos)
				ax.set_yticklabels(most_important_features_names,	fontsize=10)
				ax.set_xlabel('Relative	Importance')
				ax.set_title(f'Feature	Importance,	{model}',	fontsize=15)
				fig.tight_layout()				
				fig.savefig(FIG_PATH/f'Feature	importance_{model}.pdf')
				
				#	Partial	dependence	plot
				fig,	axs	=	plot_partial_dependence(regressor,	X_train_split[model].compute(),	sorted_idx[:10],
																																							feature_names=most_important_features_names,	figsize=(20,20))
				fig.suptitle(f'Partial	dependence	plots,	{model}',	fontsize=15)
				plt.subplots_adjust(top=0.9)
				fig.savefig(FIG_PATH/f'Partial_dependence_{model}.pdf')
				

Out[10]:

train test

R^2 MAE R^2 MAE

MSAVI2 0.482783 1594.655003 0.477233 1602.935351
MSAVI2_DTM_N_E 0.592200 1382.589521 0.591083 1386.304829
NDRE 0.500029 1547.966726 0.496541 1555.538042
NDRE_DTM_N_E 0.612631 1331.784758 0.612130 1334.770375
NDVI 0.504780 1540.306923 0.500461 1547.333477
NDVI_DTM_N_E 0.609829 1335.577543 0.608868 1338.973770
NDVI_NDRE_MSAVI2 0.556239 1440.296569 0.551393 1448.683882
NDVI_NDRE_MSAVI2_DTM_N_E 0.627061 1295.158336 0.625815 1298.917392


































